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Abstract In this work, we consider the models of cosmo-
logical inflation based on generalized scalar–tensor theories
of gravity with quadratic connection between the Hubble
parameter and coupling function. For such a class of the
models, we discuss the correspondence between well-known
versions of the scalar–tensor gravity theories and physically
motivated potentials of a scalar field. It is shown that this
class of models corresponds to the Planck observational con-
straints on the cosmological perturbation parameters for an
arbitrary potential of a scalar field and arbitrary version of
a scalar–tensor gravity theory. The spectrum of relict grav-
itational waves is analyzed, and the frequency range corre-
sponding to maximal energy density is determined. The pos-
sibility of direct detection of the relic gravitational waves,
predicted in such a class of models, by satellite and ground-
based detectors is discussed as well.

1 Introduction

At present, the explanation of universe evolution is based on
gravity theories associated with the use of various types of
exotic matter and different gravity theories, including gen-
eral relativity (GR) and its modifications [1–6]. These grav-
ity theories require the analysis of cosmological perturba-
tions which lead to the formation of a large-scale structure
and relic gravitational waves [7–11] in the framework of the
inflationary paradigm.

Considering GR scalar field cosmology in the early uni-
verse, we accept that observational constraints on the param-
eters of cosmological perturbation values due to anisotropy
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and polarization of the cosmic microwave background
(CMB) [12,13] are directly connected with the shape of the
scalar field potential [14,15]. It is possible to select a certain
class of the scalar field potentials corresponding to inflation-
ary models and satisfying observational constraints in GR
scalar field cosmology. This procedure can be considered as
an effective method of inflationary model verification [16–
19].

On the other hand, inflationary models based on modi-
fied gravity theories allow us to consider arbitrary physically
motivated potentials as relevant ones, since the spectra of cos-
mological perturbations depend not only on the form of the
scalar field potential, but also on the chosen version of mod-
ified gravity [20,21]. The different methods for constructing
and analyzing the inflationary models based on the scalar–
tensor gravity theories were described earlier in [22–27].

Nevertheless, we suggest the consideration of a new
approach for constructing the phenomenologically correct
models of cosmological inflation in modified gravity theo-
ries. This approach is based on the correspondence to obser-
vational constraints not due to the choice of the model param-
eters, but through certain relationships between these param-
eters.

Such an approach was proposed in [28] for Einstein–
Gauss–Bonnet gravity, and in [29–32] for the scalar–tensor
gravity theories. In [29–32], the connection H = λ

√
F

between the Hubble parameter H(t) and the coupling func-
tion F(φ), which defined the class of the scalar–tensor grav-
ity theory, was used to construct the exact solutions for veri-
fied inflationary models with different types of cosmological
dynamics. It is clear that the cosmological dynamic equa-
tions should be defined by the scale factor a(t) or the Hubble
parameter H(t), the scalar field evolution φ(t), and the cou-
pling function F(φ) if the potential V (φ) is given.

The motivation for using the proposed ansatz H = λ
√
F

was discussed in [29–32]. Initially given relations between
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various parameters are often used to build physically cor-
rect cosmological models both in the framework of general
relativity and for modified theories of gravity (see, for exam-
ple, [33–37]). In the case of the proposed quadratic rela-
tion between the Hubble parameter and the coupling func-
tion, the non-minimal coupling of the scalar field and cur-
vature induces deviations from the purely exponential (de
Sitter) expansion of the early universe, which corresponds
to Einstein gravity. This approach makes it possible to con-
struct quasi-de Sitter models of the early universe that sat-
isfy observational constraints for various types of inflationary
dynamics [29–32]. In [29], the inflationary solutions for the
power-law Hubble parameter were considered. In [30,31],
such models were analyzed in the context of the exponential
power-law inflation, and the exact solutions for cosmolog-
ical models with linear deviation from de Sitter expansion
were obtained in [32]. We also note that all these inflationary
models satisfy the observational constraints on the values of
the parameters of cosmological perturbations [29–32].

In this work, we follow on the described approach and
determine a certain type of cosmological dynamics from
the correspondence to well-known scalar–tensor theories of
gravity for these models. A direct correspondence between
the physical potentials of a scalar field and the well-known
types of the scalar–tensor theory of gravity for the generalized
scalar–tensor models is obtained. We also demonstrate that
the cosmological models with quadratic connection between
the Hubble parameter and the coupling function H = λ

√
F

correspond to observational constraints on the parameters of
cosmological perturbations for an arbitrary inflationary sce-
nario with a certain dynamic of accelerated expansion of the
early universe.

We also determine the spectrum of relic gravitational
waves predicted in the proposed models. In this case, we
take into account the specifics of the post-inflationary evolu-
tion of the early universe, which implies the presence of an
additional stage of the stiff energy domination. The presence
of this stage between the end of inflation and the beginning
of the radiation-dominated era affects the spectrum of relic
gravitational waves and distinguishes the proposed models
from standard inflationary scenarios.

Finally, taking into account the spectrum of relic gravita-
tional waves obtained, we evaluate the possibility of direct
verification of the proposed cosmological models based on
the possibility of the observation of the gravitational waves
with high and low frequencies by existing and promising
detectors [38–44] as well.

This paper is organized as follows. In Sect. 2, we con-
sider the cosmological dynamic equations for the proposed
models and consider satisfying the slow-roll conditions for
arbitrary background parameters. In Sect. 3, we reconstruct
and analyze a specific type of cosmological dynamics based
on the correspondence of the type of scalar–tensor gravity

to the Brans–Dicke theory. Section 4 investigates the cor-
respondence between physically motivated potentials of the
scalar field for the Brans–Dicke gravity and other well-known
scalar–tensor gravity theories for the given dynamics of the
accelerated expansion of the early universe. Section 5 shows
the correspondence of the proposed cosmological models
to any observational constraints (current and future) on the
parameters of cosmological perturbations for arbitrary back-
ground parameters. We note that further measurement of the
values of the parameters of cosmological perturbations leads
to a refinement of the energy scale of inflation and the rate
of accelerated expansion of the early universe only, and such
refinement does not eliminate the possibility for verification
of such models. Section 6 demonstrates that the models under
consideration differ from standard inflationary models by the
additional stiff energy-dominant stage, which leads to a sig-
nificant discrepancy between these models in the spectrum
of relic gravitational waves at high frequencies. In Sect. 7, we
calculate the spectrum of relic gravitational waves in accor-
dance with known observational constraints. The parameters
of relic gravitational waves predicted by the proposed cos-
mological models are estimated. A summary of our investi-
gations is presented in Sect. 8.

2 The inflationary dynamic equations

We start from a consideration of inflationary models based on
the generalized scalar–tensor (GST) gravity theory described
by the action [29–32]

SGST = 1

κ

∫
d4x

√−g

[
1

2
F(φ)R − ω(φ)

2
gμν∂μφ∂νφ − V (φ)

]

+SmSm =
∫

d4x
√−gLm, (1)

where κ is the Einstein gravitational constant, g is a deter-
minant of the spacetime metric gμν , φ is a scalar field with
the potential V = V (φ), ω(φ) and F(φ) are differentiable
functions of φ, R is the Ricci scalar, and Lm is the matter
Lagrangian. The case of vacuum spacetime corresponds to
the absence of matter; therefore, the matter part of the action
Sm should be equal to zero: Sm = 0. Further, we use a natural
system of units where κ = 8πG = c = 1.

The background dynamic equations in spatially flat four-
dimensional Friedmann–Robertson–Walker (FRW) space-
time

ds2 = −dt2 + a2(t)
(

dx2 + dy2 + dz2
)

, (2)

corresponding to the action (1) under condition Sm = 0 in
the chosen system of units are [29–32]

3FH2 + 3H Ḟ − ω

2
φ̇2 − V (φ) = 0, (3)
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3FH2 + 2H Ḟ + 2F Ḣ + F̈ + ω

2
φ̇2 − V (φ) = 0, (4)

ωφ̈ + 3ωH φ̇ + 1

2
φ̇2ω′ + V ′ − 6H2F ′ − 3Ḣ F ′ = 0. (5)

Here, an overdot represents a derivative with respect to the
cosmic time t , H ≡ ȧ/a denotes the Hubble parameter, and
F ′ ≡ ∂F/∂φ.

In addition, we note that the scalar field equation (5) can
be derived from Eqs. (3)–(4). For this reason, Eqs. (3)–(4)
completely describe the cosmological dynamics, and can be
represented in terms of the field φ as follows

V (φ) = 3FH2 + 5

2
H Ḟ + F Ḣ + 1

2
F̈, (6)

ω(φ)φ̇2 = H Ḟ − 2F Ḣ − F̈ . (7)

A number of cosmological models were considered earlier
on the basis of dynamic equations (3)–(5) with certain scalar
field potentials V (φ) and the coupling functions F(φ) (see,
for example, [22,23,25–27]).

However, we are interested in inflationary models corre-
sponding to observational constraints on the parameters of
cosmological perturbations without restrictions on the shape
of the potential V (φ) or on the parameters of GST grav-
ity theory F(φ) and ω(φ). This is the cornerstone of the
given investigation which distinguishes our new approach
from methods applied earlier.

To this end, we consider models with quadratic connection
between the Hubble parameter and coupling function [29–
32]

H = λ
√
F, (8)

where λ is a constant.
The main equations of the quadratic connection models

(QCMs) using the ansatz (8) in Eqs. (6)–(7) can be repre-
sented as

F̃(φ) ≡ λ2F(φ) = H2, (9)

Ṽ (φ) ≡ λ2V (φ) = 3H4 + 6H2 Ḣ + Ḣ2 + H Ḧ , (10)

X̃(φ, φ̇) ≡ λ2X (φ, φ̇) = Ḣ2 + H Ḧ , (11)

where the kinetic term is

X̃(φ, φ̇) ≡ −1

2
ω̃(φ)φ̇2, ω̃(φ) ≡ λ2ω(φ). (12)

We call λ the energy scale parameter of these inflationary
QCMs, since the constant λ2 normalizes the values of the
scalar field potential V (φ), its kinetic energy X (φ, φ̇), and
non-minimal coupling function F(φ).

In addition, taking into account the definitions of slow-roll
parameters and corresponding conditions on them

ε = − Ḣ

H2 � 1, δ = − Ḧ

2H Ḣ
� 1, (13)

one can define the reduced potential and reduced kinetic
energy of a scalar field from Eqs. (10)–(11),

v ≡ Ṽ

F̃2
= 3 − 6ε + 2εδ + ε2, (14)

u ≡ X̃

F̃2
= 2εδ + ε2. (15)

Defined functions v and u are connected with the class of
GST gravity theory, characteristics of the scalar field, and
cosmological dynamics as well.

As one can see, the reduced kinetic energy u is repre-
sented in terms of second-order slow-roll parameters, while
the reduced potential v contains the slow-roll parameters of
the first order. Therefore, we have u � v under conditions
(13). Thus, the general slow-roll condition X � V is satis-
fied for these inflationary QCMs when ε � 1 and δ � 1.

Considering inflationary QCMs, we have a five-parametric
{V, H, F, ω, φ} cosmological model connected by three
Eqs. (9)–(11). To investigate such a model, one can consider
the scalar field potential V = V (φ) and the Hubble param-
eter H = H(t) as a priori defined functions. This allows
one to seek cosmological solutions for these models for any
physical mechanisms of realization of the inflationary sce-
nario and to define the corresponding type of GST gravity
theory {F(φ), ω(φ)} and the type of scalar field evolution
φ(t) from Eqs. (9)–(11). The exact solutions for GCMs with
different cosmological dynamics were considered earlier in
[29–32].

However, one can also consider the inverse problem of
determining the Hubble parameter H(t), the evolution of the
scalar field φ(t), and its potential V (φ) for the chosen class
of the GST gravity {F(φ), ω(φ)} on the basis of dynamic
equations (9)–(11).

We will now consider the solution of this problem in a gen-
eral form, passing from a particular case of the Brans–Dicke
gravity to other types of GST gravity. Also, we will proceed
from the necessity of correspondence between physically
motivated potentials [18,19] and well-known GST gravity
theories [22,23].

3 Reconstruction of cosmological dynamics

In the general case, one can consider models with arbitrary
dynamics corresponding to the accelerated expansion of the
universe which can be defined by choosing the dependence
δ = δ(ε) (or by directly setting the Hubble parameter H =
H(t)) to define the parameters v and u as functions of cosmic
time.

Nevertheless, we will define the type of cosmological
dynamics in inflationary models under consideration based
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on the correspondence of the action (1) to well-known GST
gravity theories.

For this purpose, we rewrite expressions (11)–(12) as fol-
lows

− 1

2
ω̃(φ) = 1

φ̇2

(
Ḣ2 + H Ḧ

)
= F̃ ′2

˙̃F2

(
Ḣ2 + H Ḧ

)
. (16)

Further, on the basis of expressions (9) and (13), we obtain

ω̃(φ) = −1

2

(
F̃ ′2

F̃
+ Ḧ

H Ḣ2

)
= − F̃ ′2

F̃

(
1

2
+ δ

ε

)
, (17)

and using Eqs. (9) and (12), we get

ω(φ) = − F ′2

F

(
1

2
+ δ

ε

)
. (18)

To define the relation δ/ε in explicit form, we consider the
correspondence of GST gravity action (1) to the Brans–Dicke
gravity theory [22,23] which corresponds to

F(φ) = φ, ω(φ) = ωBD

φ
. (19)

We have the well-known restriction on the Brans–Dicke
parameter

− 3/2 < ωBD < ∞, (20)

for the scalar field φ.
Using expressions (18) and (19), we have

ω(φ) = − 1

φ

(
1

2
+ δ

ε

)
= ωBD

φ
. (21)

Thus, Eq. (21) leads to the linear connection between
slow-roll parameters

δ = kε, (22)

where k is a constant parameter.
The restriction (20) on the Brans–Dicke gravity param-

eter ωBD implies the constraint k < 1 on the parameter k.
Therefore, the kinetic function ω(φ) can be defined as

ω(φ) = − (1 + 2k)F ′2

2F
, k < 1. (23)

Further, from the expression (22) and the definition of the
slow-roll parameters (13), we find the Hubble parameter

H(t) = [(2k − 1)(αt − λ)]1/(1−2k) , (24)

where α is a constant.
We call k the dynamic parameter of the inflationary mod-

els we are talking about, since the constant k determines the
rate of accelerated expansion of the universe.

For the special case k = 1/2, we have

H(t) = λ exp(αt), a(t) ∝ exp

(
λ

α
exp(αt)

)
, (25)

corresponding to double exponential expansion of the early
universe.

For k = 0, the Hubble parameter is

H(t) = λ − αt, a(t) ∝ exp
(
λt − α

2
t2

)
. (26)

It corresponds to the linear deviation from the de Sitter model.
For k = 0 and α = 0, we have pure exponential expansion

H(t) = λ, a(t) ∝ exp (λt) , (27)

or the de Sitter model corresponding to the minimal coupling,
since in the case F = 1, Eqs. (9) and (23) lead to H = λ and
ω = 0.

For the other values of the constant k, we obtain the inter-
mediate inflation, that is, the regime of accelerated expansion
of the universe between pure exponential and power-law evo-
lutions [45–47].

4 The connection between the class of GST gravity and
the potential

We now turn to considering the connection between the scalar
field potential and the parameters of GST gravity for infla-
tionary QCMs.

First, substituting the connection between slow-roll
parameters (22) in (14), we obtain

v = 3 − 6ε + (1 + 2k)ε2. (28)

In addition, using the expressions (9), (13), and (24), it
is not difficult to find the connection between the slow-roll
parameter ε and the coupling function

ε = αH2(k−1) = α F̃k−1. (29)

Substituting (29) into (28) and taking into account (9)–
(10), we obtain the exact expression for the potential

V (φ) = V0F
2(φ) + V1F

k+1(φ) + V2F
2k(φ), (30)

where

V0 = 3λ2, V1 = −6αλ2k, (31)

V2 = α2(1 + 2k)λ2(2k−1). (32)

Under the slow-roll condition ε � 1, the reduced potential
is v � 3, and the scalar field potentialV (φ) can be considered
as the main term only (with negligible second and third terms)
in the following form

V (φ) � 3λ2F2(φ). (33)

The kinetic function defined earlier by expression (23) is
as follows

ω(φ) = −
(
k + 1

2

)
F ′2

F
. (34)
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Substituting the expression for the Hubble parameter (24)
into (9), we obtain

F(φ) = λ−2 [(2k − 1)(αt − λ)]2/(1−2k) . (35)

The last expression (35) defines a functional connection
between the type of a scalar field evolution φ(t) and the
coupling function F(φ).

Thus, Eqs. (30)–(35) completely define the relations
between parameters of inflationary models based on GST
gravity with quadratic connection (8) and cosmological
dynamics (24).

It is important to note that under the conditions k = α = 0,
from Eqs. (30)–(35), we have F = 1, ω = 0, and V = 3λ2 =
�.

The GST gravity action (1) is reduced to the case of the
Einstein gravity and cosmological constant1

SE = 1

κ

∫
d4x

√−g

(
1

2
R − �

)
, (36)

if we consider pure exponential expansion (27). It is clear that
using (35) where k = α = 0, we get F(φ) = 1. Such a situ-
ation is considered for Higgs inflation [48] and in modified
gravity with higher derivatives [49,50].

Thus, the non-minimal coupling F(φ) between the scalar
field and scalar curvature induces the following: (i) a devi-
ation of the scalar field potential from the flat one because
V 	= const in (33); (ii) a deviation of the accelerated expan-
sion regime Ḣ > −H2 from the de Sitter model, because
H 	= const ; and (iii) a determination of the evolution of the
scalar field itself φ(t).2

Now, we will analyze the correspondence between physi-
cally motivated scalar field potentials and well-known classes
of GST gravity theories in the framework of QCMs. Expres-
sion (33) in the slow-roll approximation and Eqs. (34)–(35)
are the basis of our investigation of QSMs.

We also note that the use of the slow-roll approximation is
a common practice for analyzing cosmological inflationary
models (see, for example, [18,19]).

4.1 Chaotic inflation with the massive scalar field

Primarily, we consider the chaotic inflation with massive
scalar field [2,18,19,47]

V (φ) = m2

2
φ2. (37)

From Eqs. (33)–(34) we have

F = φ, m2 = 6λ2, (38)

1 The flat potential V = � = const can be considered as the cosmo-
logical constant.
2 This feature of the considered cosmological models was discussed
earlier in [29–32].

ω(φ) = −1 + 2k

2φ
, k < 1. (39)

Thus, we see the correspondence to the Brans–Dicke gravity,
where the mass of the scalar field m2 = 6λ2 defines the
energy scale parameter.

From (35) and 38 we obtain the following scalar field
evolution

φ(t) = λ−2 [(2k − 1)(αt − λ)]2/(1−2k) , (40)

corresponding to the inflationary model under consideration.
To realize the transition to pure exponential expansion

H = λ, under conditions k = α = 0, from (37)–(40), one
has φ = 1, F = 1, ω = −1/2, X = −ω

2 φ̇2 = 0, and
V = 3λ2 corresponding to Einstein gravity.

4.2 Chaotic inflation with quartic potential

Considering the case of chaotic inflation with quartic poten-
tial [18,19],

V (φ) = λC

4
φ4, (41)

where λC is a self-coupling constant of a scalar field. From
expressions (33)–(34) we have

F(φ) = ξφ2, ξ = 1

2λ

√
λC

3
, (42)

ω(φ) = −2(1 + 2k)ξ. (43)

Thus, we find the correspondence to induced gravity [23],
where the energy scale parameter λ2 is defined by the cou-
pling constant ξ of the scalar field and self-coupling constant
λC as

λ2 = λC

12ξ2 . (44)

From Eqs. (35) and (42), one has the corresponding evo-
lution of the scalar field

φ(t) = ± 1

λ
√

ξ
[(2k − 1)(αt − λ)]1/(1−2k) , (45)

corresponding to this inflationary model.
To realize the transition to the pure exponential expansion

H = λ, under conditions k = α = 0, from (41)–(45) one
has φ = ± 1√

ξ
, F = 1, ω = −2ξ , X = −ω

2 φ̇2 = 0, and

V = 3λ2 corresponding to Einstein gravity.

4.3 Inflation with the Higgs potential

Further, we consider inflation with the Higgs potential [18,
19,48]

V (φ) = λH

4
(φ2 − σ 2)2, (46)
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where λH is the self-coupling constant, and σ is the vacuum
expectation value of the Higgs field.

From expressions (33)–(34) one has non-minimal cou-
pling [23] and the kinetic function

F(φ) = 1 − ξφ2, (47)

ω(φ) = −2(1 + 2k)

(
ξ2φ2

1 − ξφ2

)
, (48)

where the energy scale constant and non-minimal coupling
constant are

λ2 = λHσ 4

12
, ξ = σ−2. (49)

The corresponding scalar field is

φ(t) = ±
√

1

ξ
− 1

ξλ2 [(2k − 1)(αt − λ)]2/(1−2k). (50)

For the transition to the pure exponential expansion H =
λ, under conditions k = α = 0, from (46)–(50) one has
φ = 0, F = 1, ω = 0, X = −ω

2 φ̇2 = 0, and V = 3λ2

corresponding to Einstein gravity.

4.4 Inflation with exponential potential

Now, we consider the case of exponential potential [2,18,47]

V (φ) = 3λ2 exp (−2βφ) , (51)

where β is a positive constant. From (33)–(35), we have expo-
nential coupling [23] and the kinetic function

F(φ) = exp (−βφ) , (52)

ω(φ) = −β2
(

1 + 2k

2

)
exp (−βφ) . (53)

From (35) and (52), one can find the scalar field evolution

φ(t) = − 1

β
ln

[
λ−2 [(2k − 1)(αt − λ)]2/(1−2k)

]
. (54)

To realize the transition to the pure exponential expansion
H = λ, under conditions k = α = 0, from (51)–(49) one has
φ = 0, F = 1, ω = −β2/2, X = −ω

2 φ̇2 = 0, and V = 3λ2

corresponding to Einstein gravity.
As one can see, we obtain a good correspondence between

the physical potentials and well-known scalar–tensor gravity
theories in slow-roll approximation in QCMs. Also, one has a
transition to the case of the de Sitter model based on Einstein
gravity with a cosmological constant as the source of the pure
exponential expansion of the universe.

On the basis of Eqs. (33)–(35), one can define the parame-
ters of the scalar–tensor gravity theories for the other types of
the physically motivated potentials [18]. On the other hand,
one can reconstruct the type of scalar field potential by using
expression (33) for any coupling function F = F(φ) and the

other corresponding model’s parameters from (34)–(35) as
well.

Since the specific type of the inflationary scenario is
unknown, we will consider a model-independent verifica-
tion procedure for an arbitrary type of potential or a type
of scalar–tensor gravity, which are connected by relations
(33)–(34).

This approach differs from usual verification of the stan-
dard inflationary models based on Einstein gravity, in which
it is necessary to determine the specific form of the scalar
field potential [1,2,18,19].

5 Parameters of cosmological perturbations

Let us consider verification of QCMs, proposed in Sect. 4,
onto observational constraints on the cosmological perturba-
tion parameter values.

The parameters of cosmological perturbations in inflation-
ary models based on the action (1) with quadratic connection
H = λ

√
F for arbitrary dynamics were considered in [29–

32].
The constraints on the values of the parameters of

cosmological perturbations following from observation of
anisotropy of the CMB by Planck [12],

AS = 2.1 × 10−9, (55)

nS = 0.9663 ± 0.0041, (56)

r < 0.065, (57)

restrict the inflationary model’s parameters.
The expressions of the parameters of cosmological pertur-

bations on the crossing of the Hubble radius were presented
in [29–32] as follows

PS = AS = λ2

16π2ε(ε − δ)
, (58)

PT = AT = 2λ2

π2 , (59)

r = PT

PS
= 32ε(ε − δ), (60)

nS = 1 − 4ε + 2δ + 2εδ + (1 − ε)

(
εδ − ξ

ε − δ

)
, (61)

nT = 0, (62)

where AS and AT are the values of the power spectra of scalar
and tensor perturbations PS and PT on the crossing of the
Hubble radius, nS and nT are the spectral indices of scalar
and tensor perturbations, and

ξ = εδ − 1

H
δ̇ � 1 (63)

is the third slow-roll parameter.
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In addition, we note that the velocities of scalar and tensor
perturbations for such a cosmological model are equal to
the speed of light in vacuum cS = cT = 1 [29,30], which
correspond to the modern observational constraint |cT −1| ≤
5 × 10−16 on the velocity of gravitational waves [24].

For any type of cosmological dynamics, from (58) and
(60) we find

λ2 = π2

2
× AS × r = π2

9.5
× 10−8 × r (64)

for the energy scale parameter.
For the reconstructed type of the Hubble parameter (24),

we have

δ = kε, ξ = k(2k − 1)ε2. (65)

Substituting these expressions into Eqs. (60)–(61), we
obtain

r = 32(1 − k)ε2, (66)

nS − 1 = 4(k − 1)ε. (67)

Thus, from (66)–(67), one has a dynamic parameter in
terms of the parameters of cosmological perturbations

k = 1 − 2

r
(1 − nS)2. (68)

Finally, from constraints (55)–(57) and expressions (64)
and (68), we obtain the following model-independent condi-
tions

λ2 < 6.7 × 10−10, (69)

k < 0.973, (70)

on the energy scale parameter λ2 and dynamic parameter k
corresponding to verified inflationary models for any poten-
tial V (φ), any type of the scalar–tensor gravity F(φ), and
kinetic function ω(φ) connected by Eqs. (33)–(34).

As one can see, the observational constraints (55)–(57)
lead to the model-independent condition (70) on the dynamic
parameter k corresponding to constraint (23) for the Brans–
Dicke gravity.

In Fig. 1, the dependence following from (68), namely

r = 2

1 − k
(1 − nS)2, (71)

for different values of the dynamic parameter k is repre-
sented.

For verifying inflationary models, the values of the tensor-
to-scalar ratio r and the spectral index of scalar perturbations
nS must fall into the outer or inner regions corresponding to
68% and 95% confidence levels [12,13].

Also, we note that the future refinement of observational
constraints (55)–(57) leads to the refinement of the condition
on the constant parameters of the considered cosmological

Fig. 1 The dependencies r = r(nS) for the different values of the
parameter k with constraints on the tensor-to-scalar ratio r due to the
Planck TT,TE,EE+lowE+lensing+BAO+BICEP2/Keck Array observa-
tions [12,13]

models (64) and (68) only, and it does not eliminate the pos-
sibility for the verification of such models.

Nevertheless, we note that compliance with the observa-
tional constraints on the values of the parameters of cosmo-
logical perturbations is an indirect verification of inflation-
ary models. This statement follows from the fact that relic
gravitational waves were not detected directly, and at the
moment only indirect estimates of the contribution of ten-
sor perturbations to the anisotropy and polarization of CMB
are considered, which lead to an upper bound (57) on the
value of tensor-to-scalar ratio [12,13]. Also, various mod-
els of cosmological inflation can satisfy observational con-
straints (55)–(57); however, they can differ in the spectra of
relic gravitational waves (see, for, example, [51–54,58]).

Thus, the direct verification of these inflationary mod-
els can be carried out by the detection of relic gravitational
waves at the present time. To analyze the possibility of direct
detection of relic gravitational waves predicted by these mod-
els, it is necessary to consider their spectrum taking into
account the specific post-inflationary evolution of the uni-
verse in the proposed cosmological models compared with
standard inflationary models.

6 Stiff energy-dominated era

For the standard inflation based on Einstein gravity, the
radiation-dominated (RD) era with a state parameter wE =
1/3 occurs after the end of inflation [1,2].

The state parameter for the case of standard inflation is
defined as follows [1,2]

wE = XE − VE

XE + VE
= −1 + 2

3
εE, (72)
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and one has wE � −1 at the inflationary stage for εE � 1,
wE = −1/3 at the end of inflation for εE = 1, and wE = 1/3
for the transition to the radiation-dominated era with εE = 2.

Now, we consider the state parameter of a scalar field for
inflationary models based on GST gravity with connection
H = λ

√
F in terms of the reduced potential and kinetic

energy (14)–(15), namely

wS = u − v

u + v
= X − V

X + V
= − 3(1 − 2ε)

3 − 6ε + 4εδ + 2ε2 . (73)

On the inflationary stage, under conditions ε � 1 and
δ � 1, from (73) one has w � −1. At the end of inflation,
with ε = δ = 1, one has wS = 1, and for the transition to
the radiation-dominated era, one has ε = δ = 2; besides, the
state parameter is wS = 3/5.

Thus, for such cosmological models, the intermediate
epoch taking place between the end of inflation and the
beginning of the radiation-dominated era. These intermedi-
ate epoch can be considered as the stiff energy-dominated
(SD) era, as discussed in [51–54].

The generalized analysis of cosmological models imply-
ing a stiff energy-dominated era with state parameter 1/3 <

wS ≤ 1 was considered in [51–54]. The quintessential infla-
tion implying an additional kinetic energy-dominant stage
with wS = 1 was considered, for example, in [55–57].
The spectrum of relic gravitational waves corresponding to
nT = 0 and wS > 1/3, similar to the case for the proposed
cosmological models, was considered in [51].

Here, in our work, we are not limited to any specific model.
We will consider an additional stiff energy-dominated era
between the end of inflation and the radiation-dominated era
with state parameter

3/5 ≤ wS ≤ 1 (74)

for an arbitrary model of cosmological inflation based on the
GST gravity with connection H = λ

√
F .

Since cosmological models with an additional SD stage
imply the blue-tilted spectrum of relic gravitational waves
(see, for example, [51–54]), one can estimate their maximal
energy density taking into account the ultraviolet cutoff fre-
quency of the spectrum due to the Big Bang nucleosynthesis
(BBN) constraint [58].

7 Spectrum of relic gravitational waves in QCMs

Direct detection of relic gravitational waves is important for
verifying the validity of the inflationary paradigm in describ-
ing the evolution of the early universe. According to infla-
tionary cosmology, relic gravitational waves at the present
time fill the universe as a stochastic background [51–54].

The energy density of relic gravitational waves ρGW is
usually defined in terms of the following dimensionless quan-

tity [51–54]

�GW( f ) = 1

ρc

dρGW

d log f
, (75)

where ρc is the critical density, and f is the frequency of relic
gravitational waves.

The spectrum of relic gravitational waves at the present
time for the cosmological models with an additional SD stage
can be defined by the expression [53,54]

�GW( f ) � �
(0)
GW ×

{
1, f � fRD,

1.27 ×
(

f
fRD

)αS
, f � fRD,

where the plateau of the spectrum is

h2�
(0)
GW � r × 10−15, (76)

the parameter αS is defined by the state parameter wS as
follows

αS = 2

(
3wS − 1

3wS + 1

)
, (77)

and fRD is the present-day frequency corresponding to the
horizon scale at the SD-to-RD transition.

The reduced Hubble parameter at the present time is esti-
mated as h � 0.68 [12].

As one can see, for the case wS = 1/3, the parameter
αS = 0, and the spectrum of relic gravitational waves closes
to the flat one.

Also, we note that for f � fRD and αS > 0, one has
�GW( f ) � �

(0)
GW; that is, the energy density of relic gravi-

tational waves can be defined as follows

h2�GW( f ) � 1.27 × r × 10−15 ×
(

f

fRD

)αS

. (78)

Now, we consider the LIGO bound,3 which can be
obtained from LIGO optimal sensitivity �GW � 10−9 for
the gravitational waves with frequencies f � 102 Hz [59];
that is, one has the following constraint

�GW( f � 102 Hz) < 10−9. (79)

Thus, to match the Planck constraint on the value of the
tensor-to-scalar ratio (57) and the LIGO bound on the energy
density of gravitational waves (79), we will use expression
(78) and obtain

fRD � 100 × exp

⎡
⎣−

13.6 + ln
(
h2

r

)

αS

⎤
⎦ Hz. (80)

On the basis of the state parameter of stiff energy for the
cosmological models under consideration (74) and expres-

3 Also, we note that VIRGO [60] and KAGRA [61] have approximately
the same sensitivity.
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sions (77) and (80), we obtain

10−10 Hz � fRD � 10−5 Hz, (81)

4/7 ≤ αS ≤ 1. (82)

To find the cutoff frequency of the spectrum of relic grav-
itational waves f∗, one can use the BBN constraint [58]
∫ f∗

fBBN

h2�GW( f )
d f

f
≤ 1.12 × 10−6, (83)

where fBBN � 1.41 × 10−11 Hz.
This constraint is derived from the fact that a large gravi-

tational wave energy density at the time of BBN would alter
the abundance of the light nuclei produced in this process.

Taking into account that f∗ � fRD and f∗ � fBBN from
(78) and (83), one has

1.27 × r ×
(

f∗
fRD

)αS

≤ 1.12 × 109 × αS. (84)

Thus, from the constraint on the value of the tensor-to-
scalar ratio (57) and (81)–(82), one has the following cutoff
frequency of the spectrum of relic gravitational waves

105 Hz � f∗ � 2 × 107 Hz. (85)

After substituting (81) and (85) into (78), we obtain the
following energy density of gravitational waves at the present
era

�GW( f∗) � 1.3 × 10−6, (86)

corresponding to cutoff frequency (85).
Figure 2 shows the spectra of relic gravitational waves

predicted in the proposed inflationary models. The energy
density corresponding to the flat part of the spectra is �GW �
1.8×10−16, and the maximum energy density �

(max)
GW ( f∗) �

1.3 × 10−6 due to (86) corresponds to the frequency range
(85).

Fig. 2 The spectra of relic gravitational waves �GW = �GW( f ) on a
logarithmic scale with the BBN constraint and LIGO bound for the stiff
energy state parameter 3/5 ≤ wS ≤ 1 (4/7 ≤ αS ≤ 1) and without the
SD stage for w = 1/3 (αS = 0)

The dimensionless amplitude of relic gravitational waves
can be obtained from the expression [58,62]

hc( f ) = 1.26 × 10−18
(

Hz

f

)√
h2�GW( f ). (87)

Thus, the maximal amplitude of relict gravitational waves
with frequencies (85) and energy density (86) is

1 × 10−26 � hc( f∗) � 5 × 10−29. (88)

After estimating the parameters of relic gravitational
waves in the proposed cosmological models, we will con-
sider the possibility of detecting them.

As a promising method for registration of low-frequency
gravitational waves, the use of the satellite cluster as an
interferometric gravitational wave detector can be consid-
ered [38–40].

For such projected satellite detectors, namely for the
Laser Interferometer Space Antenna (LISA) [39] and the
Deci-Hertz Interferometer Gravitational-Wave Observatory
(DECIGO) [40], the best sensitivities are [41]

�
(LISA)
GW ( fL � 10−3 Hz) � 3 × 10−14, (89)

�
(DECIGO)
GW ( fD � 10−1 Hz) � 5 × 10−17. (90)

From expressions (78) and (81)–(82) we obtain the follow-
ing maximal energy density of relic gravitational waves for
the frequencies fL � 10−3 Hz and fD � 10−1 Hz predicted
in QCMs4

2 × 10−14 � �GW( f = fL) � 2 × 10−12, (91)

2 × 10−12 � �GW( f = fD) � 2 × 10−11. (92)

Also, for the standard inflation with αS = 0 from (76), we
get

�
(0)
GW � 2 × 10−16. (93)

Thus, the relic gravitational waves predicted in QCMs can
in principle be registered by LISA and DECIGO, and for the
case of standard inflation, relic GWs with frequency close to
f � 10−1 Hz can be registered by DECIGO as well.

Thus, a joint data analysis from the future observations of
LISA and DECIGO can make it possible to determine what
type of cosmological inflationary model is correct: models
with an additional stage of stiff energy domination or stan-
dard inflation.

However, it should be noted that the implementation of
such projects is expected no earlier than the 2030s [41].

Also, the method of direct verification of the proposed
QCMs is the registration of high-frequency relic gravitational
waves in a frequency range (85) with amplitudes (88), cor-
responding to a maximum energy density (86).

4 Which correspond to the upper limit on the value of tensor-to-scalar
ratio r < 0.065.
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Among the existing and prospective detectors of high-
frequency gravitational waves [42], part of this frequency
range f = 1−13 MHz is covered by the ground-based Fer-
milab Holometer with sensitivity hc � 8 × 10−22 [42–44],
which consists of two co-located power-recycled Michelson
interferometers. On the basis of expression (88), we can con-
clude that relic gravitational waves predicted by QCMs can-
not be registered by this detector.

Thus, a significant improvement in the sensitivity of grav-
itational wave detectors in frequency range (85) is required
for direct verification of these cosmological models by reg-
istration of the high-frequency gravitational waves.

8 Conclusion

In this work, we considered the models of cosmological infla-
tion based on the generalized scalar–tensor theory of gravity
with a quadratic coupling between the Hubble parameter and
the non-minimal coupling function (8). In these QCMs, the
de Sitter stage induced by a cosmological constant corre-
sponds to the Einstein gravity, while the non-minimal cou-
pling between the scalar field and the scalar curvature leads
to the deviations from the de Sitter stage. Therefore, the cor-
respondence of the theory of gravity at present to the case
of general relativity (minimal coupling) leads naturally to
the �CDM model [63–65] to describe the second acceler-
ated expansion of the universe within the framework of the
QCMs. It is necessary to note that the �CDM model is in
good agreement with observational data for the current stage
of the universe’s evolution [12].

Obviously, it is necessary to determine the relationship
between the physically motivated scalar field potentials and
well-known types of GST gravity. Such a relationship was
found for a particular type of inflationary dynamics corre-
sponding to the Hubble parameter (24).

In contrast to inflationary models based on general rel-
ativity, QCMs are verified by observational constraints on
the values of cosmological perturbation parameters for an
arbitrary potential of the scalar field, that is, for an arbitrary
realization of the inflationary scenario.

Observational constraints on the values of cosmological
perturbation parameters (55)–(57) restrict only the values of
two constant parameters of QCMs, namely, the inflationary
energy scale parameter λ2 and the dynamic parameter k,
which determines the expansion rate of the early universe.
This result is achieved not by choosing the parameters of the
cosmological model, but by means of the certain relationship
(8) between the model’s parameters. Obviously, using the
relation (8) is not the only way to obtain verifiable cosmolog-
ical models. However, this approach provides new opportu-
nities to construct phenomenologically correct cosmological
models on the basis of certain relations between the model’s

parameters regardless of how the inflationary scenario was
implemented.

Thus, such an approach differs significantly from the
reconstruction procedure of the scalar field potential from
the parameters of cosmological perturbations in the frame-
work of GR [14,15] or from the reconstruction of modified
gravity theories from the universe expansion history [3,4],
which also imply different inflationary scenarios.

As an interesting feature of the proposed cosmological
models, we note that the restriction on the dynamic param-
eter k < 0.973 which follows from the constraints on the
parameters of cosmological perturbations (55)–(57) corre-
sponds to the restriction k < 1 following from the constraint
on the Brans–Dicke gravity (20) for any type of inflationary
models based on STG with relation (8).

Another property of QCMs is the presence of the stiff
energy-dominant stage after the end of inflation and before
the beginning of the radiation-dominant stage. In these mod-
els, the stiff energy state parameter has a fairly wide range
of values 3/5 ≤ wS ≤ 1, which affects the spectrum of relic
gravitational waves.

An analysis of the spectrum of relic gravitational waves in
the proposed models allowed us to determine the frequency
range 105 Hz � f∗ � 2 × 107 Hz in which their energy
density is maximal. However, in this range, the sensitivity
of modern detectors of high-frequency gravitational waves
is insufficient for direct registration.

Nevertheless, the low-frequency relic gravitational waves
predicted in the proposed cosmological models can in prin-
ciple be registered in future measurements by advanced
low-frequency gravitational wave satellite detectors [39–41],
which is an additional way to verify the proposed cosmolog-
ical models.
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